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of the structure occurring because of some voids in 
the lattice (e.g. vacancies) is possible starting from 
Tth. However, the temperature should always be 
raised to Tg to induce any significant change of the 
structure. Two such temperature barriers occurring 
in the transformation 2 H - 4 H  were reported by 
Minagawa (1978). 
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Abstract I. Introduction 

The vibrational averages of electron deformation 
densities and molecular X-ray scattering intensities 
have been calculated for the bend vibration in H20 
and CO2, and for the symmetric stretch vibration in 
H20. It is shown that bend mode vibrations, despite 
their relatively large amplitudes, have a minor effect 
on deformation densities and X-ray scattering 
intensities. Together with previous results for stretch 
vibration in diatomic molecules, which have been 
confirmed by the results in this paper for stretch 
vibration in triatomics, this means that all internal 
vibrations may be neglected except for the smearing 
of the high peaks very close to the nuclei. Since the 
X-ray intensities associated with this area will be 
found at high S values, the effect upon scattering 
intensities at low S is not important. In the valence 
region the effects are negligible compared to other 
sources of error in the comparison of calculations 
with experiment, such as basis set, libration [ cf. Her- 
mansson (1983). Chem. Phys. Lett. 99, 295-300] etc. 

The effect of vibrational averaging on calculated 
observables has been studied mostly for the stretch 
vibration in diatomic molecules. Among others, 
detailed studies have been reported for effects in both 
reciprocal (scattering) space (Stewart, 1977; Epstein 
& Stewart, 1979) and position space (Rozendaal & 
Ros, 1982; and references therein). The stretch vibra- 
tion proved to be of minor importance, yielding only 
small corrections to, for example, the static deforma- 
tion density at Re due to the small weight of other 
internuclear distances in the vibrational average. It 
is possible that the influence of bend vibrations is 
larger, as the force constants are in general smaller 
and the vibration amplitudes larger. We will therefore 
study in this paper the internal vibration modes of 
the triatomic molecules H20 and CO2, employing the 
same method as used before in our study on diatomic 
molecules. It is interesting to consider the vibrational 
motion of hydrogens as the root-mean-square (r.m.s.) 
displacements are relatively large. Hydrogens on the 
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other hand carry little electron density, so it seemed 
worthwhile to include the motion of heavier atoms, 
as in CO2. The influence of vibrational averaging on 
both the electron deformation densities and the X-ray 
scattering intensities will be considered. The informa- 
tion obtained in reciprocal space has the well known 
Fourier transform property: it will show at low 
momentum in particular the effect upon the diffuse 
part of the electron density in position space (Cop- 
pens, 1982). 

II. Method 

The larger number of degrees of freedom for the 
nuclear motions makes a study of vibrational effects 
in a triatomic system more complicated than in a 
diatomic one. In order to obtain an impression of the 
influence of individual modes within a simplified 
description, we start with the calculation of the effect 
for pure stretch and pure bend vibrations. In this way 
we can, without undue complications, describe the 
nuclear motion by a one-dimensional vibrational 
wavefunction for each mode, i.e. we use just one 
internal symmetry coordinate [either St = (1/v~)x 
(rrt + 6rE) or $2 = 60] to describe the nuclear motion. 
In this way it is possible to incorporate the anharmon- 
icity of the nuclear motion in the one-dimensional 
wavefunctions. As the anharmonicity is important for 
the possible effect of vibrational averaging we feel 
this procedure to be more adequate thaa the use of 
a harmonic normal mode of vibration. It would also 
be possible to calculate an anharmonic vibrational 
wavefunction in a normal coordinate t Q, but in view 
of the large amplitude for the bending mode, for 
example, this would imply large linear displacements 
of the nuclei which are probably less realistic than 
the motion according to the pure curvilinear sym- 
metry coordinate (Hoy, Mills & Strey, 1972). The 
relevance of these approximate calculations of the 
smearing effect for the actual (anharmonic, non- 
normal) vibration will be considered afterwards. 

The method used for these computations is 
analogous to the method used for the averaging of 
the deformation density in diatomics due to the inter- 
nal vibration. A detailed description of the method 
has been given before (Rozendaal & Ros, 1982), so 
here we restrict ourselves to a brief account. Assuming 
that the electronic system will be described correctly 
by its adiabatic ground-state wavefunction, with elec- 
tron density p(r; R), the time average of this density 
can be found from 

Pint(r) = ~ WnS ¢*(R)p(r; R)~n(R) dR, (1) 
n 

where 0,(R) is the nuclear wavefunction for vibra- 
tional state n with Wn the Boltzman weight factor 
belonging to this state. In a previous study we have 
shown that for these model calculations equation (1) 

may be simplified by supposing that vibrational 
smearing can be described with an acceptable degree 
of accuracy by taking into account only the ground- 
state vibrational wavefunction, 

ffint(l') = ~ $o*(R)p(r; R)$o(R) dR. (2) 

This simplification can also be made in the present 
study as the frequency of the bend mode (the lowest 
frequency mode for the two triatomic molecules) of 
CO2 is 675 cm -t, corresponding to an Einstein tem- 
perature of 950 K. Thermal population of excited 
vibrations is thus irrelevant to this study. 

Furthermore, as only one of the symmetry coordin- 
ates (R~) will be varied (the others remaining con- 
stant) we have 

Pint(r; R2. . .  Rn)=S $o*(R,)p(r; R)$o(R,) dR,. (3) 

The vibrational wavefunction is expanded in har- 
monic oscillator eigenfunctions ~i(R), 

with 

m 

$o(R)= ~ a#i(R),  (4) 
i=0  

~,(R)= N~H~(Rx/~) exp (-aR2/2), (5) 

Hi being a Hermite polynomial and Ni the normaliz- 
ation constant. 

The integration over R1 in (3) is carried out numeri- 
cally using the Gauss-Hermite integration technique 
(Abramowitz & Stegun, 1964). The final expression 
to be evaluated is 

Pint(r; RE.. .  Rn) 

- ~  p r ; ~  R~...R, 0(X,)~, (6) 
i=O ~/"~ ' 

with Xi the zero points of the nth-order Hermite 
polynomial, W~ the integration weight factors and 

Q(X,)= ~ aflVff/j(X,) (7) 
j=O 

The effect of internal vibration upon molecular X-ray 
scattering intensities has been calculated in an 
analogous way. The X-ray form factor corresponding 
to a particular value of R can be written (Epstein & 
Stewart, 1979, 1980) 

F(S;R) = S p(r; R) exp (iS.  r) dr, (8) 

and the elastic X-ray scattering intensity 

I(S; R)= F*(S; R)F(S; R). (9) 

Restricted again to the electronic and vibrational 
ground-state wavefunctions, the vibrational average 
of the X-ray intensity for internal coordinate R1 
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becomes: 

Iint(S; R2. . .  R.) 

--- J 0o*(R~)I(S; R)0o(R~) dR~ (10) 

- p S ; ~  RE Rn Q(X,)W~. 
4 S , = o  4 -d '  " ' "  

The molecular form factors have not been computed 
directly from the electronic wavefunctions. Instead, 
the total charge density was expanded into sets of 
spherical harmonic functions multiplied by a Slater- 
type radial function, centered at each nucleus, 

p(r; R) ~- E c,f~(r; R). (11) 
i 

The coefficients ci were computed by an analytical 
least-squares fit of the charge density, constrained to 
the total number of electrons (Baerends & Ros, 1978). 
It should be noted that the charge density was not 
divided into a number of atomic fragments, but a 
separate fit of the molecular density was made for 
each nuclear configuration. The full orbital (and 
density) relaxation is thus included in the present 
scheme. The Fourier transformation of the position 
space density represented by single-centre functions 
[equation (11)] could be performed analytically 
(Kaijser & Smith, 1977). The form factors were nor- 
malized to the number of electrons at S = 0. 

IlL Results and discussion 

Table 1. Experimental and theoretical geometries and 
force constants, calculated r.m.s, amplitudes of pure 
bend and pure stretch vibrations [for experimental 
values see Hoy et al. (1972), Smith & Overend (1971) 

and Mills (1974)] 

R (a.u.)* 
fRR (mdyn/~,- t ) t  
RMS (a.u.) 

0 (0) 
fo (mdyn A) 
RMS (°) 

Model calculations have been performed for the bend 
mode in H20 and CO2, and for the symmetric stretch 
in H20. The effect of the CO2 stretch mode is expected 
to be comparable to the CO stretch vibration, which 
has been considered before. For the internal displace- 
ment R of the bend mode we have chosen the cur- 
vilinear bend coordinate 80; the stretch coordinate 
was (~rl+ ,~r2)/,/-2. The values of o~ in the Hermite 
polynomial expansion were calculated from the 
experimental force constants and the frequencies of 
the predominantly bend or stretch vibration, using 
the relation a -- k/oo (in a.u.) (cf. Table 2). Note that 
these values are not critical in our calculation since 
a large number (30) of Hermite functions was 
included in the expansion of the vibrational 
wavefunctions. For all calculations we used Hartree-- 
Fock-Slater LCAO-SCF electronic wavefunctions 
(Baerends & Ros, 1978). The basis sets were oftdple-~" 
quality, extended with two p-function sets for the 
hydrogen atom, and two d-function sets for the car- 
bon and oxygen atoms. The nuclear displacements 
corresponding to the n integration points Xi 
[equation (6)] were chosen as the zeros of the 31st 
Hermite polynomial. Electronic wavefunctions were 
actually computed at only 21 nuclear displacements 
as the remaining ten displacements are associated 
with weight factors in equations (6) and (10) below 

De (eV)~: 

H 2 0  CO2 
exp.  H F S  exp. H F S  

1.8088 1.81 2-1921 2.197 
8.353 7.94 17.28 16.95 

0.14 

104.52 104.55 180.00 180.00 
0.697 0.70 0.785 0.65 

8.60 5.59 

10.08 9.6 16-85 18.7 

* 1 a.u. = 0.529177 x 10 -1° m. 
t 1 mdyn = 10 -s  N. 
$1 eV= 1.6x 10-t9 J. 

Table 2. Expansion coefficients of vibrational wave- 
functions in Hermite polynomials (B: bend vibration 
in H20 and CO2; S: symmetric stretch vibration in 

H 2 0 )  

H O H - B  O C O - B  H O H - S  

a 21 "289 58.731 30"741 
a o 0.99969 0.99923 0.98279 
a~ 0-02117 0. 0.18013 
a2 -0.01258 0.03911 0.02921 
a 3 -0.00160 0. 0.02677 
a4 -0.00232 -0-00214 0.00933 
a 5 -0.00307 0. 0.00240 
a s 0-00133 -0.00002 0.00158 
a 7 0-00077 0. 0.00067 
a~ -0.00037 0.00003 0.00024 

1.0E - 8 ,  which are negligible. The nuclei were posi- 
tioned in the yz plane, a twofold axis coinciding with 
the z axis. 

In Table 1 are shown the experimental geometry 
and force constants of the molecules. The calculated 
equilibrium bond angle of H20 (at the experimental 
O- -H distance) does not differ significantly from the 
experimental angle. The harmonic force constants 
from our calculations are also displayed in Table 1. 
The value for H20 is very close to the experimental 
value, that for CO2 appears to be slightly too small. 
The r.m.s, amplitudes of the vibration are listed in 
Table 1. The most important expansion coefficients 
of the vibrational wavefunctions in Hermite poly- 
nomials are given in Table 2; the total number of 
terms in this expansion [cf. equation (4)] was 30. 
These x~avefunctions were computed variationally 
following the same procedure as was used for the 
vibrational wavefunctions of diatomic molecules 
(Rozendaal & Ros, 1982). It can be seen from the 
coefficients that the symmetric stretch contains con- 
siderably more anharmonic character than the bend 
mode wavefunctions. 

The effects of the internal vibrations upon the elec- 
tron density in H20 are shown by the density 
difference maps in Fig. 1. The subtracted atomic 
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densities are values from spin-restricted HFS-LCAO 
calculations in the same basis sets as used for the 
molecule, with equal vibrational smearing (i.e. the 
promolecule is assumed to vibrate in the same way 
as the actual molecule). In both stretch and bend 
modes the effect appears to be most important in the 
positive area around the hydrogen nuclei. We note 
that the peak at the H nucleus is smeared out in both 
cases: due to the bending motion the two highest 
contours disappear, due to stretching motion only the 
highest contour. As expected, the bending motion 
leads to a lateral smearing (i.e. broadening in the 
direction perpendicular to the OH bond), whereas 
the stretching motion has more effect along the OH 
axis. In the case of a bend vibration the effect is 
slightly stronger than for the stretch vibration, as 
expected from the difference in force constants and 
r.m.s, amplitudes. The differences between all of the 
deformation densities, including the static deforma- 
tion density, are small, however. In Fig. 2 are plotted 
the static and bend-averaged deformation densities 
of CO2 along the z axis, that is, the axis through the 
carbon atom perpendicular to the bond axis and in 
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(c) 
Fig. 1. Deformation density of H20 in the plane of the molecule: 

(a) static, (b) average bend vibration, (c) average over sym- 
metrical stretch vibration. Contours at 0.0, 0.03, 0 .06 , . . . ,  0.18, 
0.21 e a.u.-3; solid lines: positive, dashed: negative, dash-dot: 
zero. 

the plane of motion (the carbon has the largest ampli- 
tude in the bend vibration in which the center of mass 
stays at the origin). The major effect in this case is 
the relatively large change in the negative part of the 
difference density close to the carbon nucleus. Again, 
the influence of the bend vibration upon the deforma- 
tion density is small. 

0.3 

- 0 5  
- Z  

- 3 0  - 2 0  -10 O0 1D 20 3.0 

Fig. 2. Deformation density along the z axis in CO2. Solid line: 
static; dashed line: average of bend vibration. 
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( b )  

Fig. 3. Difference X-ray intensity (Alst~= lmol--Ip . . . .  1) of  H20  
with scaled corrections [I~or = 10 x (A/in t - Alsta) ] for vibrational 
smearing; short dash: bend correction; long dash: stretch correc- 
tion; solid lines: static. (a) S, axis. (b) Sz axis. 
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X-ray scattering intensities for both H20 and CO2 
were computed in the x, y and z directions as func- 
tions of Sx, Sy and Sz. The CO2 molecule lies along 
the y axis, and the H 2 0  molecule is in the yz plane, 
with the C2 axis along the z axis; all vibrations are 
in the yz plane. The intensities in the Sx direction are 
practically not influenced by the vibrations in the yz 
plane. The results for the S r and Sz directions are 
given in Figs. 3 and 4. Alsta = Imol--Ipromol is the I 
difference between the seattenng intensity of the 
(static) molecular charge density and the intensity 
due to the promolecule, i.e. the superposition of the 
atomic charge densities with the atoms placed at their 
positions in the molecule: 

Ppromol ( r ) - '~ .pA(r - -RA) .  
A 

Defining the atomic form factors as 

FA(S) = ~ pA(r) exp (iS.  r) dr 

and the atomic scattering intensity as IA = I FAI 2, it is 
clear that Ip,omol differs from Y~A IA: 

Fpromol = E exp (iS.RA)FA 
A 

Ipromol = I Fpromoll 2 

=~,IA+ ~,, exp[ iS . (RA-RB)]FAF*.  
A A ~ B  

We are interested in the effect of bond formation, i.e. 
in the change with respect to Ip . . . .  ~ rather than Y~ A Ia. 

The effect of the internal vibrations is plotted as a 
scaled correction to A/sta, Icor= 10 x (Alin t -  Alsta). 
From Figs. 3(a) and 3(b) it is clear that the absolute 
We are interested in the effect of bond formation, i.e. 
in the change with respect to Ip,omo~ rather than ~A IA. 
values of the correction for the bend vibration in 
water are slightly larger than those for the stretch 
vibration at low values of Sy and Sz, but the sign is 
opposite. The corrections can be viewed as small 
shifts of the main p~ak of AL For the bend vibration 
this shift is to higher values of Sy and to lower Sz; 
the effect of the stretch vibration is opposite. In Fig. 
4 are plotted the corresponding curves for the bend 
mode in CO2. The corrections are considerably smal- 
ler than those for H20. Note that the rather strong 
change in the position space deformation density near 
the carbon nucleus does not occur in the low-S-region 
intensities. 

It is evident that the effect of the bend vibrations 
on both real-space deformation densities and X-ray 
scattering intensities is very minor indeed. We note 
that our results are based on pure stretch and pure 
(curvilinear) bend vibrations. In view of the very 
small effects found it is no use extending the calcula- 
tions to more sophisticated vibrational wavefunc- 
tions. 

Concerning the HFS method, we found that the 
calculated equilibrium geometry for H20 is very good 
(cf. also Miiller, Jones & Harris, 1983). This holds 

for both the bond angle and the bond length. Com- 
puted force constants for both H20 and CO2 show 
reasonable accuracy as well. 

-1%.0 - v., 7. 5 25 50 
(a) 

Z5 

7.O 

3 0  

-35 
0.0 25 50 75 

(b) 
Fig. 4. Difference X-ray intensity of CO2 with scaled corrections 

(see caption of Fig. 3) for averaging over bend vibrations. (a) 
S,. axis. (b) Sz axis. 
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